skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Jingyi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The development of efficient and cost-effective catalysts for hydrogen evolution reaction (HER) is crucial for the advancement of electrochemical water splitting technology. Here, we report a novel synthetic method for the preparation of single-crystalline NiCoP nanorods with tunable aspect ratios using a CO-assisted, trioctylphosphine (TOP)-mediated approach. The introduction of CO gas at different temperatures allows for the control of the nanorod growth, resulting in various aspect ratios while maintaining a hexagonal crystal structure and a composition of 1:1 Ni/Co as NiCoP. Our results demonstrate that the NiCoP nanorods with higher aspect ratios exhibit improved HER activity and stability, with the highest aspect ratio nanorods showing the lowest overpotential and Tafel slope in both acidic and alkaline media. This study highlights the importance of controlling the size and morphology of bimetallic phosphide nanoparticles to optimize their catalytic activity for HER, providing new insights into the design and optimization of nanostructured catalysts for electrochemical water splitting applications. 
    more » « less
    Free, publicly-accessible full text available May 15, 2026
  2. Abstract A growing body of research suggests that digital multimodal composing can provide students multiple points of entry for making sense of local climate change issues and sharing their voices through digital activism. Building upon this scholarship, this study examined the processes of 32 small groups (n= 55) of 7th- and 8th-grade students as they co-created a wide range of multimodal projects (e.g., videos, podcasts, infographics, posters, and cartoons) that explored the environmental, ecological, and sociopolitical impacts of inequitable access to urban tree canopy and greenspace in their city. In particular, scholarship on onto-epistemic heterogeneity, critical place-based learning, and multimodality were integrated to gain an interdisciplinary understanding of how digital multimodal composing mediated students’ sensemaking about urban forestry impacts on community health and ecological well-being. Data sources consisted of field notes, audio and video recordings, survey data, student interviews, and students’ final multimodal projects. Through qualitative and multimodal data analysis, five main themes emerged for how multiple modes mediated students’ sensemaking about critical urban forestry: (1) embracing tree equity for compelling stories, (2) engaging authentic audiences through storytelling, (3) perspective-taking through multiple modes, (4) exploring affective dimensions of urban heat islands, and (5) developing solutions for critical urban forestry issues. These findings contribute new insights into how digital multimodal storytelling can provide a productive way for students to make sense of climate justice issues and gain agency by experiencing multiple ways of knowing. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  3. Abstract. The hydrology of thawing permafrost affects the fate of the vast amount of permafrost carbon due to its controls on waterlogging, redox status, and transport. However, regional mapping of soil water storage in the soil layer that experiences the annual freeze-thaw cycle above permafrost, known as the active layer, remains a formidable challenge over remote arctic regions. This study shows that Interferometric Synthetic Aperture Radar (InSAR) observations can be used to estimate the amount of soil water originating from the active layer seasonal thaw. Our ALOS InSAR results, validated by in situ observations, show that the thickness of the soil water that experiences the annual freeze-thaw cycle ranges from 0 to 75 cm in a 60-by-100-km area near the Toolik Field Station on the North Slope of Alaska. Notably, the spatial distribution of the soil water correlates with surface topography and land vegetation cover types. We found that pixel-mismatching of the topographic map and radar images is the primary error source in the Toolik ALOS InSAR data. The amount of pixel misregistration, the local slope, and the InSAR perpendicular baseline influence the observed errors in InSAR Line-Of-Sight (LOS) distance measurements non-linearly. For most of the study area with a percent slope of less than 5%, the LOS error from pixel misregistration is less than 1 cm, translating to less than 14 cm of error in the soil water estimates. 
    more » « less
    Free, publicly-accessible full text available December 17, 2025
  4. Free, publicly-accessible full text available December 1, 2025
  5. Abstract We establish interior regularity for convex viscosity solutions of the special Lagrangian equation. Our result states that all such solutions are real analytic in the interior of the domain. 
    more » « less
  6. Abstract Elastomers generally possess low Young's modulus and high failure strain, which are widely used in soft robots and intelligent actuators. However, elastomers generally lack diverse functionalities, such as stimulated shape morphing, and a general strategy to implement these functionalities into elastomers is still challenging. Here, a microfluidic 3D droplet printing platform is developed to design composite elastomers architected with arrays of functional droplets. Functional droplets with controlled size, composition, position, and pattern are designed and implemented in the composite elastomers, imparting functional performances to the systems. The composited elastomers are sensitive to stimuli, such as solvent, temperature, and light, and are able to demonstrate multishape (bow‐ and S‐shaped), multimode (gradual and sudden), and multistep (one‐ and two‐step) deformations. Based on the unique properties of droplet‐embedded composite elastomers, a variety of stimuli‐responsive systems are developed, including designable numbers, biomimetic flowers, and soft robots, and a series of functional performances are achieved, presenting a facile platform to impart diverse functionalities into composite elastomers by microfluidic 3D droplet printing. 
    more » « less
  7. Oxidation is a corrosion reaction where the corroded metal forms an oxide. Prevention of oxidation at the nanoscale is critically important to retain the physicochemical properties of metal nanoparticles. In this work, we studied the stability of polyethylene glycol (PEG) coated copper nanoparticles (PEGylated CuNPs) against oxidation. The freshly-prepared PEGylated CuNPs mainly consist of metallic Cu which are quite stable in air although their surfaces are typically covered with a few monolayers of cuprous oxide. However, they are quickly oxidized in water due to the presence of protons that facilitate oxidation of the cuprous oxide to cupric oxide. PEG with carboxylic acid terminus could slightly delay the oxidation process compared to that with thiol terminus. It was found that a solvent with reducing power such as ethanol could greatly enhance the stability of PEGylated CuNPs by preventing further oxidation of the cuprous oxide to cupric oxide and thus retain the optical properties of CuNPs. The reducing environment also assists the galvanic replacement of these PEGylated CuNPs to form hollow nanoshells; however, they consist of ultra-small particle assemblies due to the co-reduction of gold precursor during the replacement reaction. As a result, these nanoshells do not exhibit strong optical properties in the near-infrared region. This study highlights the importance of solvent effects on PEGylated nonprecious metal nanoparticles against oxidation corrosion and its applications in preserving physicochemical properties of metallic nanostructures. 
    more » « less